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Qual/Quan table

• From data pre-processing

DB Name Mass RT platform IN1 IN2 IN3 IN4 IN5 IN6

HMDB 1-Phenylethylamin 122.09745 24.97845 ES- 0.12862 0.1421305 0.1301326 0.1247924 0.1200045 0.1053275
HMDB 2-Ethylacrylic acid 101.06421 17.811575 ES- 0.0332025 0.0174262 0.0158166 0.0179326 0.0143742 0.0064953
HMDB Canavanine 177.09653 10.338581 ES- 0.0141136 0.0134146 0.0182777 0.0193855 0.0245958 0.0011908
HMDB Diketogulonic acid 193.03069 4.7050639 ES- 0.0209463 0.0203901 0.0165056 0.0189088 0.0137482 0.017231
HMDB Iso-Valeraldehyde 87.080171 11.164359 ES- 0.6558109 0.2742277 0.2651933 0.3093793 0.2101024 0.0541026
in-house 3,4-Dehydro-Dprol 114.04431 3.5491023 ES- 0.2900544 0.287811 0.2290651 0.2754269 0.2314117 0.2061301
in-house 4-hydroxy-proline  132.05326 3.5958634 ES- 0.5584389 0.7353401 0.5273908 0.4412898 0.5074794 0.5423602
in-house Malic acid 133.01996 3.9406386 ES- 0.0555016 0.0461576 0.0290383 0.0390783 0.0380952 0.0308288
in-house 2,3,4-Trihydroxybu135.04472 3.5763487 ES+ 0.0223984 0.0146371 0.0150894 0.0097238 0.0116862 0.0116129
in-house 2,3-Diaminopropio105.07016 3.3202935 ES+ 0.024859 0.0207034 0.0225235 0.0201288 0.0226763 0.0226569
in-house 4-Methy2-oxovaleri129.07306 16.624045 ES+ 0.1341287 0.2458095 0.2138968 0.2383272 0.1646037 0.2156238
in-house 5-Aminopentanoic 116.0542 3.9125471 ES+ 0.015214 0.0157145 0.0152048 0.0139855 0.0148445 0.0151512
in-house Acetylcarnitine 204.12263 3.8790521 ES+ 0.503742 0.4063954 0.3690539 0.3346704 0.1894332 0.267591
HMDB 11-beta-hydroxyand483.25453 21.64161 ES+ 0.0352862 0.0143528 0.0117155 0.0149876 0.0110671 0.003493
HMDB 13-Hydroperoxylin 313.23515 21.000715 ES+ 0.012489 0.0124697 0.0117186 0.0120185 0.0129048 0.0116153
HMDB 17-Hydroxylinoleni295.22749 19.925457 ES+ 0.0141132 0.0156397 0.0151444 0.0142477 0.0153367 0.015173
HMDB 2,4-Diaminobutyric 119.0844 3.8790898 ES+ 0.0636478 0.0838566 0.0635174 0.067999 0.0942851 0.0625007
HMDB 2,6 dimethylheptan302.23203 18.02586 ES+ 0.0031349 0.0042189 0.0027814 0.0082044 0.002749 0.0032303
HMDB 2-Ethylhydracrylic 119.07199 15.226531 ES+ 0.0236145 0.0239315 0.0242947 0.0237831 0.0239368 0.0242611
HMDB 2-Ketohexanoic aci 131.07027 3.7353582 ES+ 0.0038071 0.0051703 0.0041894 0.0056894 0.0057567 0.0036369
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Why normalization?

• Compounds respond to experimental conditions differently 
due to chemical diversity.

• Sources of  experimental variation
– sample inhomogeneity

– different extraction

– differences in sample preparation

– ion source

– ion suppression

• It is important to separate biological variation from 
variations introduced in the experimental process.

Sysi-Aho, M.; Katajamaa, M.; Yetukuri, L.; Oresic, M., Normalization method for metabolomics data using optimal selection of  multiple 
internal standards. BMC bioinformatics 2007, 8, 93.
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Why normalization?

• Using isotope labeled internal standards for each 
metabolite is NOT practical because
– The number of  metabolite is large.

– The metabolites are chemically too diverse to afford a common 
labeling approach

– Many metabolites are not known

– The availability of  stable isotope labeled references is very limited.

Sysi-Aho, M.; Katajamaa, M.; Yetukuri, L.; Oresic, M., Normalization method for metabolomics data using optimal selection of  multiple 
internal standards. BMC bioinformatics 2007, 8, 93.
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Normalization approaches

• Use optimal scaling factors for each sample based on 
complete dataset
– unit norm of  intensities

– median of  intensities

• Use a single or multiple standards
– internal (added to sample prior to extraction)

– external (added to sample after extraction) 

Sysi-Aho, M.; Katajamaa, M.; Yetukuri, L.; Oresic, M., Normalization method for metabolomics data using optimal selection of  multiple 
internal standards. BMC bioinformatics 2007, 8, 93.
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Normalization approaches 

Limitations of  approach 1:
• Suffering from the lack of  an absolute concentration reference for 

different metabolites

• Constraining the data to a specific norm based on total signal affects its 
covariance structure.

– Metabolite concentration increase in a specific group of  metabolites 
is not balanced by a decrease of  another group.

Limitations of  approach 2:
• Assignment of  the standards to normalize specific peaks is unclear.

Sysi-Aho, M.; Katajamaa, M.; Yetukuri, L.; Oresic, M., Normalization method for metabolomics data using optimal selection of  multiple 
internal standards. BMC bioinformatics 2007, 8, 93.
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An example

8
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An alternative approach

• Normalization using Optimal selection of  Multiple Internal 
Standards (NOMIS) 

9

Centering, scaling, transformation

• Induced biological variation through experimental design 
are what we look for. 

• But other factors need to be considered too:
– Metabolites present in high concentrations are not necessarily more 

important than those present in low concentrations.

– Concentrations of  metabolites in the central metabolism are 
generally relatively constant, while the concentrations of  
metabolites that are present in pathways of  the secondary 
metabolism usually show much larger differences in concentration 
depending on the environmental conditions.

– Uninduced biological variation: fluctuations in concentration under 
identical experimental conditions.

– Technical variation

– Heteroscedasticity
10
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Centering, scaling, transformation

• Centering, scaling, and transformation of  metabolomics 
data relate the differences in metabolite concentrations in 
the different samples to differences in the phenotypes of  the 
cells from which these samples were obtained.

11

Centering, scaling, transformation

12
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Centering

• Converts all the concentrations to fluctuations around zero 
instead of  around the mean of  the metabolite 
concentrations.

• Focus on the fluctuating part of  the data. 

• Applied in combination with data scaling and 
transformation.

13

Scaling

• Divide each variable by a factor

• Different variables have a different scaling factor

• Aim to adjust for the differences in fold differences between 
the different metabolites.

• Results in the inflation of  small values

• Two subclasses
– Uses a measure of  the data dispersion

– Uses a size measure

14
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Scaling: subclass 1

• Use data dispersion as a scaling factor
– auto: use the standard deviation as the scaling factor. All the 

metabolites have a standard deviation of  one and therefore the data 
is analyzed on the basis of  correlations instead of  covariance.

– pareto: use the square root of  the standard deviation as the scaling 
factor. Large fold changes are decreased more than small fold 
changes and thus large fold changes are less dominant compared to 
clean data.

– vast: use standard deviation and the coefficient of  variation as 
scaling factors. This results in a higher importance for metabolites 
with a small relative sd.

– range: use (max-min) as scaling factors. Sensitive to outliers.

15

Scaling: subclass 2

• Use average as scaling factors
– The resulting values are changes in percentages compared to the 

mean concentration.

– The median can be used as a more robust alternative.

16
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Transformation

• Log and power transformation

• Both reduce large values relatively more than the small 
values.

• Log transformation
– pros: removal of  heteroscedasticity

– cons: unable to deal with the value zero.

• Power transformation
– pros: similar to log transformation

– cons: not able to make multiplicative effects additive

17

Centering, 
scaling, 
transformation

A. original data
B. centering
C. auto
D. pareto
E. range
F. vast
G. level
H. log
I. power

18
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Log transformation, again

• Hard to do useful statistical tests with a skewed 
distribution.

• A skewed distribution or exponentially decaying 
distribution can be transformed into a Gaussian 
distribution by applying a log transformation.

http://www.medcalc.org/manual/transforming_data_to_normality.php
19

Outlier analysis
DB Name Mass RT Instrument CP1 CP4 CP5 CP2 CP3 CP6

NIST (+)‐galactose 217 15.6432 GC 0.07220543 0.06763952 0.05645402 0.19147302 0.89388092 0.52391403
NIST (+)‐Mannose 111 16.1069 GC 0.06917746 0.00706453 0.05991109 0.00102921 0.14233213 0.092648

NIST 1,4‐Butanediam 174 15.5695 GC 0.01915597 0.01540993 0.01316491 0.00985555 0.01740541 0.01441497
NIST 1,5‐anhydroglu 147 15.6755 GC 0.27335179 0.69264869 1.33827843 0.66726119 1.27042292 0.06215285
HMDB 11‐beta‐hydrox 483.254531 21.6416101 ES+ 0.01971402 0.01280484 0.00774709 0.00515638 0.01824955 0.01379582

HMDB 13‐Hydroperox 313.235153 21.0007149 ES+ 0.0147208 0.0120644 0.01158581 0.01320837 0.01149144 0.01216372
HMDB 17‐Hydroxylino 295.227487 19.9254568 ES+ 0.01621269 0.01457397 0.01452179 0.01704355 0.01475745 0.01451786

NIST 1‐cyclohexene 127 5.4681 GC 0.05719642 0.02546542 0.07211745 0.04553947 0.03202725 0.04938444
HMDB 1‐Phenylethyla 122.097448 24.9784501 ES‐ 0.14633149 0.12267952 0.10285151 0.13400616 0.14149369 0.10108422

NIST Glucose 73 16.2833 GC 194.464526 193.390828 378.660169 300.732186 539.778597 808.889528
S 2,3,4‐Trihydrox 135.044716 3.57634868 ES+ 0.02561722 0.01533536 0.0089078 0.01876651 0.01079665 0.0110569

S 2,3‐Diaminopro105.070158 3.32029346 ES+ 0.02569076 0.02508627 0.02008465 0.02179467 0.02051684 0.02129889
NIST 2,4‐bishydroxyb 103 10.5092 GC 0.02483397 0.01906404 0.01757337 0.01352737 0.02714883 0.01498949
HMDB 2,4‐Diaminobut119.084405 3.87908984 ES+ 0.07609924 0.06936676 0.04789434 0.06989164 0.06511184 0.11452725

HMDB 2,6 dimethylhe 302.232031 18.0258597 ES+ 0.00828555 0.00897917 0.00535005 0.00325899 0.00279613 0.00174071
S 2‐aminobutyric 130 7.16317 GC 0.47301493 0.59640279 0.62730713 0.36893587 0.36989687 0.40698242

HMDB 2‐Ethylacrylic a 101.064209 17.8115754 ES‐ 0.02246093 0.01582154 0.01235352 0.00815676 0.0261188 0.02319674
HMDB 2‐Ethylhydracry119.071994 15.2265313 ES+ 0.02424006 0.02386794 0.02395416 0.02393768 0.02427207 0.02398221

NIST 2‐Hydroxy‐3‐m 145 7.07231 GC 0.16934316 0.14489713 0.01160834 0.07573712 0.06076782 0.03866568
S 2‐hydroxybutyr 131 6.52167 GC 0.78522263 0.58500452 1.09530082 0.58572461 0.68570527 0.54563315
S 2‐Hydroxygluta 198 12.5112 GC 0.00898708 0.01172375 0.01207569 0.0127851 0.00683606 0.00905586

NIST 2‐hydroxypyrid 152 5.21487 GC 2.14103338 2.15321383 2.38078173 1.52075446 2.672602 1.83195088
HMDB 2‐Ketohexanoic131.070273 3.73535823 ES+ 0.0037897 0.00544538 0.00522184 0.00472749 0.00469586 0.00667645

NIST 2‐methy‐2‐hyd 221 7.67217 GC 0.01402093 0.01259207 0.01729476 0.01095531 0.01533539 0.01034363
HMDB 2‐Methylacetoa 117.0538 3.6120234 ES+ 0.02579758 0.03159884 0.02355465 0.03002218 0.03539992 0.03038233

HMDB 2‐Methylbutyro246.169434 19.1986568 ES+ 0.00933674 0.00692789 0.0041819 0.00388336 0.01132417 0.01192467
HMDB 2‐Octenedioic a173.079059 15.3173769 ES+ 0.00964669 0.00700057 0.0043726 0.00278267 0.0134011 0.01273207
NIST 2‐oxo‐3‐methy 89 6.26107 GC 0.06824451 0.06385102 0.09296196 0.06557308 0.09416076 0.06153601

S 2‐oxo‐4‐methy 71 7.76032 GC 0.07848267 0.06625182 0.09493752 0.0647436 0.1161296 0.07321774
20
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Outlier analysis

• Types of  outliers
– Sample outliers

– Variable outliers

• Causes of  outliers
– Instrument saturation

– Under the detection limit

– Imperfection in data processing

– Real biological variation

• What should we do?
– Remove extreme outliers to prevent data analysis bias from 

happening

– Study the outlier samples and outlier metabolites individually

21

How to detect outliers?

• Statistical models

• Linear models

• Proximity-based

• Subspace method for high dimensional outlier detection

• Supervised outlier detection

Aggarwal, C. C., Outlier analysis. Springer: New York, 2013; p xv, 446 p.

More outlier analysis after multivariate statistics

22
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Univariate vs. multivariate stats

• In math, univariate statistics include all statistical 
techniques for analyzing a single variable of  interest.
– t-tests

– ANOVA

– multiple regression

• Multivariate statistics includes all statistical techniques for 
analyzing two or more variables of  interest. 

• In metabolomics, each metabolite is a variable. Each 
sample is represented as a vector of  many dimensions.

23

Univariate vs. multivariate stats

An example:

• To quantify the nutritional habits of  American women, 
nutrient intake was measured for a random sample of  1000 
women. In a univariate study, we might ask each woman in 
the survey how much vitamin C they take in on a daily 
basis.

• In a multivariate study, we might look at not only vitamin 
C, but calcium, iron, vitamin A as well.

http://sites.stat.psu.edu/~ajw13/stat505/fa06/01_courseintro/WK1_courseoverview.htm
24
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Univariate statistics

• A basic way of  presenting univariate data is to create a 
frequency distribution of  the individual cases.

Due to the Central Limit 
Theorem, many of  these 
frequency distributions can be 
modeled as a normal/Gaussian 
distribution.

25

Gaussian distribution
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https://en.wikipedia.org/wiki/Normal_distribution
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Sample statistics

https://en.wikipedia.org/wiki/Normal_distribution

Sample mean: X=
1

n
Xi

i1

n



Sample variance: S2  1

n1
Xi  X 2

i1

n



Sample standard deviation: S  S2

27

Test of  significance

Null hypothesis H0:   0

Alternative hypethesis H1: <0

Test statistic: t  x 0

s n

Sample standard deviation: s  1

n1
xi  x 2

i1

n



The test statistic t follows a student’s t 
distribution. The distribution has n-1
degrees of  freedom.

• One-sample t-test: is the sample 
drawn from a known population?

28
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Student’s t-test and p-value

When the null hypothesis is 
rejected, the result is said to be 
statistically significant.

29

Test of  significance

• Two-sample t-test: are the two populations different?

• The two samples should be 

independent.

Null hypothesis H0: 1 2  0

Alternative hypethesis H1: 1 2  0

Test statistic: t 
x1  x2    12 

s1
2

n1

 s2
2

n2

30
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Test of  significance

Equivalent statements:

• The p-value is small.

• The difference between the two populations is unlikely to 
have occurred by chance, i.e. is statistically significant.

31

Test of  significance

• The p-value is big.
• The difference between the 

two populations are said 
NOT to be statistically 
significant.

32



08/07/2013

17

Test of  significance

• Paired t-test: what is the effect of  a treatment?

• Measurements made on the same individuals before and 
after the treatment.

Example: Subjects participated in a study on the effectiveness of  a 
certain diet on serum cholesterol levels.

Subject Before After Difference

1 201 200 -1

2 231 236 +5

3 221 216 -5

5 260 243 -17

6 228 224 -4

7 245 235 -10

H0 :d  0

Ha :d  0

Test statistic: t  d d
sd n

33

Correct the p-value

• To counteract the problem of  multiple comparisons and 
control the Type I error

• Methods
– Bonferroni correction

– Bonferroni step-down

– Westfall and Young Permutation

– Benjamini and Hochberg false discovery rate

34
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Normality test

• Assumptions of  a t-test
– Each of  the two populations being compared should follow a 

Gaussian distribution.

– The samples are randomly drawn without any selection bias.

• Normality test
– Quantile-quantile plot (QQ plot)

– Shapiro-Wilk

– Kolmogorov-Smirnov

– Pearson’s chi-squared test

35

Normality test

• QQ plot: compare two probability distributions by plotting 
their quantiles against each other

http://en.wikipedia.org/wiki/Quantile-quantile_plot
36
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Normality test

• Shapiro-Wilk test: tests the null hypothesis that a sample 
came from a Gaussian distributed population

• Test statistic
W 

aix i i1

n 
2

xi  x 
i1

n
2

 x i   is the i-th smallest number in the list.

 The constants ai  are given by

 a1,,an   mTV 1

mTV 1V 1m 1/2  

 m= m1,,mn T  are the expected values of 

the order statistics of i.i.d. random variables 

sampled from the standard normal distributions.

 V is the covariance matrix of those order statistics.http://en.wikipedia.org/wiki/Shapir
o-Wilk_test

37

t-test and normality assumption

• Based on the Central Limit Theorem, the distribution of  a 
sample mean approaches Gaussian when the sample size is 
sufficiently large.
– Rule of  thump:  n > 30

• What if  the normality assumption is violated?
– Use non-parametric methods

38
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Non-parametric test

• Parametric tests: assume the data arise from a distribution 
described by a few parameters
– Gaussian distribution with mean and variance

– If  the assumptions are met, parametric methods are more efficient.

• Nonparametric tests: do NOT make parametric assumptions
– Most often based on ranks as opposed to raw values

– If  the normality assumption is grossly violated, nonparametric tests can 
be more efficient.

• One-sample test: Wilcoxon Signed Rank

• Two-sample test: Wilcoxon-Mann-Whitney

39

A parametric t-test goes wrong

• Example: two-sample t-test
– Sample 1: {1,2,3,4,5,6,7,8,9,10}

– Sample 2: {7,8,9,10,11,12,13,14,15,16,17,18,19,20}

– Sample averages: 5.5 and 13.5

– Sample variance 
– t-test p-value: p = 0.000019

• Example: two-sample t-test
– Sample 1: {1,2,3,4,5,6,7,8,9,10}

– Sample 2: {7,8,9,10,11,12,13,14,15,16,17,18,19,20, 200}

– Sample averages: 5.5 and 25.9

– Sample variance 
– t-test p-value: p = 0.12

s1
2  9.2,  s2

2 17.5

s1
2  9.2,  s2

2  2335

40
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Non-parametric tests

• Many non-parametric methods convert raw values to ranks 
and then analyze ranks.

• In case of  ties, mid-ranks are used.
– Raw data: {105, 120, 120, 121}

– Ranks: {1, 2.5, 2.5, 4}

Parametric test non-parametric counterpart

one-sample t test Wilcoxon signed-rank

two-sample t test Wincoxon two-sample rank-sum

k-sample ANOVA Kruskal-Wallis

Pearson r Spearman ρ

41

ANOVA

• Compare the means of  three or more populations

• A generalization of  the two-sample t-test

• Use the F-distribution to test for significance

• Factor: an independent treatment variable whose settings 
(values) are controlled and varied by the experimenter 

• Level: the intensity setting of  a factor

• 1-way ANOVA
– Only one factor is considered.

Null hypothesis: There is NO difference in the population means 
of  the different levels of  the only factor.

Alternative hypothesis: The means are not the same, i.e. at least 
one pair of  means is different.

42
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2-way ANOVA

• Two factors, A and B, are considered.

• Possible hypotheses
– Case 1

Null: There is no difference in the means of  factor A.

Alternative: The means are not equal.

– Case 2

Null: There is no difference in means of  factor B.

Alternative: The means are not equal.

– Case 3

Null: There is no interaction between factors A and B.

Alternative: There is an interaction between factors A and B.

43

3-way ANOVA

• Three factors (A, B, and C) are considered.

• The main effects are factors A, B, and C.

• The two-factor interactions are: AB, AC, and BC.

• There is also a three-factor interaction: ABC.

• For each of  the seven cases
– Null: There is no difference in means.

– Alternative: The means are not equal.

44



08/07/2013

23

Multivariate statistics

What questions can we ask in a multivariate analysis?

• For a single population of  women, we might ask:
– What is the mean daily intake of  each nutrient?

• Statistical methods: sample mean and confidence intervals

• Graphical methods: histograms

– What are the relationships among the various nutrients?

• Statistical methods: correlation analysis, PCA, factor analysis

• Graphical methods: scatter plots

– Does the average woman meet federal nutritional standards?
• Univariate: one-sample t-test to see if  each variable meets the 

standards
• Multivariate: one-sample Hotelling’s T2 to see if  all variables 

together meet the standards

sites.stat.psu.edu/~ajw13/stat505/fa06/01_courseintro/WK1_courseoverview.htm 
45

Multivariate statistics

• For two populations of  women, we might ask:
– What is the effect of  a particular educational program on women’s 

nutrition?
• Univariate: two-sample t-test to compare the two groups of  

women on each of  the individual nutritional variables
• Multivariate: two-sample Hotelling’s T2 test to see if  the two 

groups vary on any or all or some part of  the variables

46
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Multivariate statistics

• For three or more groups of  women, we might ask:
– Do the daily nutritional intake differ among the four treatment 

groups (control, lecture, TV, and web)?

• Univariate: ANOVA

• Multivariate: MANOVA

– Can the women be classified into groups of  similar individuals?

• Cluster analysis

– Given the daily nutritional intake of  an individual woman, can we 
predict whether or not she has high blood pressure?

• Partial least squares discriminant analysis (PLS-DA) 

– How is women’s daily nutrient intake related to their health?

• Canonical correlation analysis to relate the nutrient intake 
variables to general health outcome variables (blood pressure, 
heart rate, cholesterol, glucose, BMI)

47

Test of  significance

• Hotelling’s T2-test: tests for hypothesis on multiple variables

• Separate univariate t-tests are NOT appropriate since 
variables could be highly correlated.
– A univariate t-test neglects the covariance among measures and 

inflate the chance of  falsely rejecting at least one hypothesis (Type I 
error).

• One-sample T2-test

• Two-sample T2-test

48
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Correlation

• Graphical method: scatter plot

• Pearson product-moment correlation coefficient

• ρ measures the linear relationship between variable x and y.

• ρ and R2 (coefficient of  determination)

 
xi  x  yi  y 

i1

n
xi  x 

i1

n
2

yi  y 
i1

n
2

49

Correlation

50

1 0.8 0.4 0 -0.4 -0.8 -1

1 1 1 -1 -1 -1
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Significance of  correlation

51

ρ = 0.99
Is this significant?

ρ = 0.85
Is this significant?

http://bioinformatics.ca/workshops/2012/informatics-and-statistics-metabolomics

Significance of  correlation

52

ρ = 0.05ρ = 0.99

Add two more points to the plot

http://bioinformatics.ca/workshops/2012/informatics-and-statistics-metabolomics
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Significance of  correlation

use only data at the extreme 
ends of  the line

ρ = 0.95
Is this significant?

use only a small number of  
“good” data points

ρ = 0.95
Is this significant?

http://bioinformatics.ca/workshops/2012/informatics-and-statistics-metabolomics
53

Clustering

• Group similar objects together

• Any clustering method requires
– A method to measure similarity/dissimilarity between objects

– A threshold to decide whether an object belongs to a cluster

– A way to measure the distance between two clusters

• Common clustering algorithms
– K-means

– Hierarchical

– Self-organizing map

• Unsupervised machine learning techniques

54
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Hierarchical clustering

1. Find the two closest objects and merge them into a cluster

2. Find and merge the next two closest objects (or an object 
and a cluster, or two clusters)

3. Repeat step 2 until all objects have been clustered

55

Hierarchical clustering

• Methods to measure similarity between objects
– Euclidean, Manhattan

– Pearson correlation

– Cosine similarity

• Linkage: ways to measure the distance between two clusters

56

single complete centroid average
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Hierarchical clustering

57

Dimension reduction

• Why to reduce dimensions?
– Help visualize and interpret dependencies among sets of  variables

• Methods
– PCA

– Single value decomposition (SVD)

• PCA
– Transform correlated variables into uncorrelated variables

– Order the uncorrelated variables by the amount of  variance they 
explain in the data

– Discard low-variance variables  

58
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PCA

• Unsupervised

• Note of  caution: dimension of  maximum variance is not 
necessarily the dimension of  maximum separation.

59
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Classification

• Use a training set of  correctly-identified observations to 
build a predictive model

• Predict to which of  a set of  categories a new observation 
belongs 

• Supervised machine learning

• Methods
– Linear discriminant analysis

– Support vector machine (SVM)

– Artificial neural network (ANN)
– k-nearest neighbor

– Random forest

– Partial least squares discriminant anlaysis

60
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PLS-DA

• The predictive model describes the relationship between the 
dependent and independent variables.

• Interpretation of  the model
– R2X and R2Y

• fraction of  the variance that the model explains in the 
independent and dependent variables

• Range: 0-1

– Q2Y

• measure of  the predictive accuracy of  the model

• usually estimated by cross validation or permutation testing

• Range: 0-1

• > 0.5 is considered good while > 0.9 is outstanding

61

Note of  caution

• Supervised classification methods are powerful.

• BUT, they can overfit your data, severely.

62

Do NOT skip the clustering step.
Do assess the significance of the predictive model.
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Outlier analysis, again

63

 
Model Description PCA PLS-DA 

# of  PCs R2X # of  PCs R2X R2Y Q2Y 
Model 1 20 samples with all 

211 Variables 
5 0.54 3 0.26 0.97 -0.07 

Model 2 211 variables after 
excluding samples 1, 
16 and 17 from model 

1 

4 0.50 3 0.30 0.98 0.15 

Model 3 137 variables after 
excluding variables 
with VIP < 0.5 in 

model 2 

5 0.59 3 0.33 0.97 0.35 

Model 4 70 variables after 
excluding variables 

with VIP < 1 in model 
2 

5 0.61 1 0.21 0.70 0.49 

PCA plots

64
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PLS-DA plots

65

 

 

1 2

3 4

Software packages

• Open source
– R

– MetaboAnalyst

– MultiExperiment Viewer (MeV)

– Octave (very similar to MATLAB)

– Many others ……

• Proprietary
– SIMPA-P

– SAS

– MATLAB

– Many others ……

66
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Statistical analysis in R

• Student’s t-test
t.test()

• ANOVA
lm(), anova()

• Correlation

cor()

• Clustering
– Hierarchical: hclust()

– k-means: keans()

• PLS-DA
– mixOmics package

67

MetaboAnalyst

• Web-based: http://www.metaboanalyst.ca

68

Workflow 
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69

Thank you!

70
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Two-sample t-test

• Degree of  freedom for a two-sample t-test

d. f . 
s1

2 n1  s2
2 n2 2

s1
2 n1 2

n1 1   s2
2 n2 2

n2 1 

71

T2 test

• One-sample T2 test

• Two-sample T2 test

T 2  n X 0 T S1 X 0 
X  is the vector of column means

S  is the sample covariance matrix

T 2  n1n2

n1  n2

X1  X2 T S1
pooled X1  X2 

72
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1-way ANOVA

• Principle: The total variation in the data is partitioned into 
a portion that is due to random errors and a portion due to 
changes in the levels of  the only factor.

Organize the measurements into an n k  rectangular array {xij}.

k  = total number of levels

n = total number of observations for each level

Then               xij  x.. 2
 n x. j  x.. 2

 xij  x. j 2

i1

n


j1

k


j1

k


i1

n


j1

k


where xii  denotes the "grand" or "overall" mean.

x. j  denotes the mean for the jth level.

This equation is also written as

SStotal  SStreatment  SSerr
73

1-way ANOVA

74
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1-way ANOVA table

75


